Solutions for Chapter 8

Solutions for exercises in section 8. 2

8.2.1. The eigenvalues are $\sigma(\mathbf{A})=\{12,6\}$ with alg mult $_{\mathbf{A}}(6)=2$, and it's clear that $12=\rho(\mathbf{A}) \in \sigma(\mathbf{A})$. The eigenspace $N(\mathbf{A}-12 \mathbf{I})$ is spanned by $\mathbf{e}=(1,1,1)^{T}$, so the Perron vector is $\mathbf{p}=(1 / 3)(1,1,1)^{T}$. The left-hand eigenspace $N\left(\mathbf{A}^{T}-12 \mathbf{I}\right)$ is spanned by $(1,2,3)^{T}$, so the left-hand Perron vector is $\mathbf{q}^{T}=(1 / 6)(1,2,3)$.
8.2.3. If \mathbf{p}_{1} and \mathbf{p}_{2} are two vectors satisfying $\mathbf{A p}=\rho(\mathbf{A}) \mathbf{p}, \mathbf{p}>\mathbf{0}$, and $\|\mathbf{p}\|_{1}=1$, then $\operatorname{dim} N(\mathbf{A}-\rho(\mathbf{A}) \mathbf{I})=1$ implies that $\mathbf{p}_{1}=\alpha \mathbf{p}_{2}$ for some $\alpha<0$. But $\left\|\mathbf{p}_{1}\right\|_{1}=\left\|\mathbf{p}_{2}\right\|_{1}=1$ insures that $\alpha=1$.
8.2.4. $\sigma(\mathbf{A})=\{0,1\}$, so $\rho(\mathbf{A})=1$ is the Perron root, and the Perron vector is $\mathbf{p}=(\alpha+\beta)^{-1}(\beta, \alpha)$.
8.2.5. (a) $\rho(\mathbf{A} / r)=1$ is a simple eigenvalue of \mathbf{A} / r, and it's the only eigenvalue on the spectral circle of \mathbf{A} / r, so (7.10.33) on p. 630 guarantees that $\lim _{k \rightarrow \infty}(\mathbf{A} / r)^{k}$ exists.
(b) This follows from (7.10.34) on p. 630.
(c) \mathbf{G} is the spectral projector associated with the simple eigenvalue $\lambda=r$, so formula (7.2.12) on p. 518 applies.
8.2.6. If \mathbf{e} is the column of all 1 's, then $\mathbf{A e}=\rho \mathbf{e}$. Since $\mathbf{e}>\mathbf{0}$, it must be a positive multiple of the Perron vector \mathbf{p}, and hence $\mathbf{p}=n^{-1} \mathbf{e}$. Therefore, $\mathbf{A p}=\rho \mathbf{p}$ implies that $\rho=\rho(\mathbf{A})$. The result for column sums follows by considering \mathbf{A}^{T}.
8.2.7. Since $\rho=\max _{i} \sum_{j} a_{i j}$ is the largest row sum of \mathbf{A}, there must exist a matrix $\mathbf{E} \geq \mathbf{0}$ such that every row sum of $\mathbf{B}=\mathbf{A}+\mathbf{E}$ is ρ. Use Example 7.10.2 (p. 619) together with Exercise 8.2 .7 to obtain $\rho(\mathbf{A}) \leq \rho(\mathbf{B})=\rho$. The lower bound follows from the Collatz-Wielandt formula. If \mathbf{e} is the column of ones, then $\mathbf{e} \in \mathcal{N}$, so

$$
\rho(\mathbf{A})=\max _{\mathbf{x} \in \mathcal{N}} f(\mathbf{x}) \geq f(\mathbf{e})=\min _{1 \leq i \leq n} \frac{[\mathbf{A} \mathbf{e}]_{i}}{e_{i}}=\min _{i} \sum_{j=1}^{n} a_{i j}
$$

8.2.8. (a), (b), (c), and (d) are illustrated by using the nilpotent matrix $\mathbf{A}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. (e) $\quad \mathbf{A}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ has eigenvalues ± 1.
8.2.9. If $\xi=g(\mathbf{x})$ for $\mathbf{x} \in \mathcal{P}$, then $\xi \mathbf{x} \geq \mathbf{A x}>\mathbf{0}$. Let \mathbf{p} and \mathbf{q}^{T} be the respective the right-hand and left-hand Perron vectors for \mathbf{A} associated with the Perron root r, and use (8.2.3) along with $\mathbf{q}^{T} \mathbf{x}>0$ to write

$$
\xi \mathbf{x} \geq \mathbf{A} \mathbf{x}>\mathbf{0} \Rightarrow \xi \mathbf{q}^{T} \mathbf{x} \geq \mathbf{q}^{T} \mathbf{A} \mathbf{x}=r \mathbf{q}^{T} \mathbf{x} \quad \Longrightarrow \quad \xi \geq r
$$

so $g(\mathbf{x}) \geq r$ for all $\mathbf{x} \in \mathcal{P}$. Since $g(\mathbf{p})=r$ and $\mathbf{p} \in \mathcal{P}$, it follows that $r=\min _{\mathbf{x} \in \mathcal{P}} g(\mathbf{x})$.
8.2.10. $\mathbf{A}=\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right) \Longrightarrow \rho(\mathbf{A})=5$, but $g\left(\mathbf{e}_{1}\right)=1 \Longrightarrow \min _{\mathbf{x} \in \mathcal{N}} g(\mathbf{x})<\rho(\mathbf{A})$.

Solutions for exercises in section 8.3

8.3.1. (a) The graph is strongly connected.
(b) $\rho(\mathbf{A})=3$, and $\mathbf{p}=(1 / 6,1 / 2,1 / 3)^{T}$.
(c) $h=2$ because \mathbf{A} is imprimitive and singular.
8.3.2. If \mathbf{A} is nonsingular then there are either one or two distinct nonzero eigenvalues inside the spectral circle. But this is impossible because $\sigma(\mathbf{A})$ has to be invariant under rotations of 120° by the result on p. 677. Similarly, if \mathbf{A} is singular with alg $\operatorname{mult}_{\mathbf{A}}(0)=1$, then there is a single nonzero eigenvalue inside the spectral circle, which is impossible.
8.3.3. No! The matrix $\mathbf{A}=\left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right)$ has $\rho(\mathbf{A})=2$ with a corresponding eigenvector $\mathbf{e}=(1,1)^{T}$, but \mathbf{A} is reducible.
8.3.4. \mathbf{P}_{n} is nonnegative and irreducible (its graph is strongly connected), and \mathbf{P}_{n} is imprimitive because $\mathbf{P}_{n}^{n}=\mathbf{I}$ insures that every power has zero entries. Furthermore, if $\lambda \in \sigma\left(\mathbf{P}_{n}\right)$, then $\lambda^{n} \in \sigma\left(\mathbf{P}_{n}^{n}\right)=\{1\}$, so all eigenvalues of \mathbf{P}_{n} are roots of unity. Since all eigenvalues on the spectral circle are simple (recall (8.3.13) on p . 676) and uniformly distributed, it must be the case that $\sigma\left(\mathbf{P}_{n}\right)=\left\{1, \omega, \omega^{2}, \ldots, \omega^{n-1}\right\}$.
8.3.5. A is irreducible because the graph $\mathcal{G}(\mathbf{A})$ is strongly connected-every node is accessible by some sequence of paths from every other node.
8.3.6. \mathbf{A} is imprimitive. This is easily seen by observing that each $\mathbf{A}^{2 n}$ for $n>1$ has the same zero pattern (and each $\mathbf{A}^{2 n+1}$ for $n>0$ has the same zero pattern), so every power of \mathbf{A} has zero entries.
8.3.7. (a) Having row sums less than or equal to 1 means that $\|\mathbf{P}\|_{\infty} \leq 1$. Because $\rho(\star) \leq\|\star\|$ for every matrix norm (recall (7.1.12) on p. 497), it follows that $\rho(\mathbf{S}) \leq\|\mathbf{S}\|_{1} \leq 1$.
(b) If \mathbf{e} denotes the column of all 1's, then the hypothesis insures that $\mathbf{S e} \leq \mathbf{e}$, and $\mathbf{S e} \neq \mathbf{e}$. Since \mathbf{S} is irreducible, the result in Example 8.3.1 (p. 674) implies that it's impossible to have $\rho(\mathbf{S})=1$ (otherwise $\mathbf{S e}=\mathbf{e}$), and therefore $\rho(\mathbf{S})<$ 1 by part (a).
8.3.8. If \mathbf{p} is the Perron vector for \mathbf{A}, and if \mathbf{e} is the column of 1 's, then

$$
\mathbf{D}^{-1} \mathbf{A D e}=\mathbf{D}^{-1} \mathbf{A p}=r \mathbf{D}^{-1} \mathbf{p}=r \mathbf{e}
$$

shows that every row sum of $\mathbf{D}^{-1} \mathbf{A D}$ is r, so we can take $\mathbf{P}=r^{-1} \mathbf{D}^{-1} \mathbf{A D}$ because the Perron-Frobenius theorem guarantees that $r>0$.
8.3.9. Construct the Boolean matrices as described in Example 8.3 .5 (p. 680), and show that \mathbf{B}_{9} has a zero in the $(1,1)$ position, but $\mathbf{B}_{10}>\mathbf{0}$.
8.3.10. According to the discussion on p. 630, $\mathbf{f}(t) \rightarrow \mathbf{0}$ if $r<1$. If $r=1$, then $\mathbf{f}(t) \rightarrow \mathbf{G f}(0)=\mathbf{p}\left(\mathbf{q}^{T} \mathbf{f}(0) / \mathbf{q}^{T} \mathbf{p}\right)>\mathbf{0}$, and if $r>1$, the results of the Leslie analysis imply that $f_{k}(t) \rightarrow \infty$ for each k.
8.3.11. The only nonzero coefficient in the characteristic equation for \mathbf{L} is c_{1}, so $\operatorname{gcd}\{2,3, \ldots, n\}=1$.
8.3.12. (a) Suppose that \mathbf{A} is essentially positive. Since we can always find a $\beta>0$ such that $\beta \mathbf{I}+\operatorname{diag}\left(a_{11}, a_{22}, \ldots, a_{n n}\right) \geq \mathbf{0}$, and since $a_{i j} \geq 0$ for $i \neq j$, it follows that $\mathbf{A}+\beta \mathbf{I}$ is a nonnegative irreducible matrix, so (8.3.5) on p. 672 can be applied to conclude that $(\mathbf{A}+(1+\beta) \mathbf{I})^{n-1}>\mathbf{0}$, and thus $\mathbf{A}+\alpha \mathbf{I}$ is primitive with $\alpha=\beta+1$. Conversely, if $\mathbf{A}+\alpha \mathbf{I}$ is primitive, then $\mathbf{A}+\alpha \mathbf{I}$ must be nonnegative and irreducible, and hence $a_{i j} \geq 0$ for every $i \neq j$, and \mathbf{A} must be irreducible (diagonal entries don't affect the reducibility or irreducibility).
(b) If \mathbf{A} is essentially positive, then $\mathbf{A}+\alpha \mathbf{I}$ is primitive for some α (by the first part), so $(\mathbf{A}+\alpha \mathbf{I})^{k}>\mathbf{0}$ for some k. Consequently, for all $t>0$,

$$
\mathbf{0}<\sum_{k=0}^{\infty} \frac{t^{k}(\mathbf{A}+\alpha \mathbf{I})^{k}}{k!}=\mathrm{e}^{t(\mathbf{A}+\alpha \mathbf{I})}=\mathrm{e}^{t \mathbf{A}} \mathrm{e}^{t \alpha \mathbf{I}}=\mathbf{B} \quad \Longrightarrow \quad \mathbf{0}<\mathrm{e}^{-\alpha t} \mathbf{B}=\mathrm{e}^{t \mathbf{A}}
$$

Conversely, if $\mathbf{0}<\mathrm{e}^{t \mathbf{A}}=\sum_{k=0}^{\infty} t^{k} \mathbf{A}^{k} / k$! for all $t>0$, then $a_{i j} \geq 0$ for every $i \neq j$, for if $a_{i j}<0$ for some $i \neq j$, then there exists a sufficiently small $t>0$ such that $\left[\mathbf{I}+t \mathbf{A}+t^{2} \mathbf{A}^{2} / 2+\cdots\right]_{i j}<0$, which is impossible. Furthermore, \mathbf{A} must be irreducible; otherwise
$\mathbf{A} \sim\left(\begin{array}{cc}\mathbf{X} & \mathbf{Y} \\ \mathbf{0} & \mathbf{Z}\end{array}\right) \Longrightarrow \mathrm{e}^{t \mathbf{A}}=\sum_{k=0}^{\infty} t^{k} \mathbf{A}^{k} / k!\sim\left(\begin{array}{cc}\star & \star \\ \mathbf{0} & \star\end{array}\right), \quad$ which is impossible.
8.3.13. (a) Being essentially positive implies that there exists some $\alpha \in \Re$ such that $\mathbf{A}+\alpha \mathbf{I}$ is nonnegative and irreducible (by Exercise 8.3.12). If (r, \mathbf{x}) is the Perron eigenpair for $\mathbf{A}+\alpha \mathbf{I}$, then for $\xi=r-\alpha,(\xi, \mathbf{x})$ is an eigenpair for \mathbf{A}.
(b) Every eigenvalue of $\mathbf{A}+\alpha \mathbf{I}$ has the form $z=\lambda+\alpha$, where $\lambda \in \sigma(\mathbf{A})$, so if r is the Perron root of $\mathbf{A}+\alpha \mathbf{I}$, then for $z \neq r$,

$$
|z|<r \Longrightarrow \operatorname{Re}(z)<r \Longrightarrow \operatorname{Re}(\lambda+\alpha)<r \Longrightarrow \operatorname{Re}(\lambda)<r-\alpha=\xi
$$

(c) If $\mathbf{A} \leq \mathbf{B}$, then $\mathbf{A}+\alpha \mathbf{I} \leq \mathbf{B}+\alpha \mathbf{I}$, so Wielandt's theorem (p. 675) insures that $r_{A}=\rho(\mathbf{A}+\alpha \mathbf{I}) \leq \rho(\mathbf{B}+\alpha \mathbf{I})=r_{B}$, and hence $\xi_{A}=r_{A}-\alpha \leq r_{B}-\alpha=\xi_{B}$.
8.3.14. If \mathbf{A} is primitive with $r=\rho(\mathbf{A})$, then, by (8.3.10) on p. 674,

$$
\begin{aligned}
\left(\frac{\mathbf{A}}{r}\right)^{k} \rightarrow \mathbf{G}>\mathbf{0} & \Longrightarrow \exists k_{0} \text { such that }\left(\frac{\mathbf{A}}{r}\right)^{m}>\mathbf{0} \quad \forall m \geq k_{0} \\
& \Longrightarrow \frac{a_{i j}^{(m)}}{r^{m}}>0 \quad \forall m \geq k_{0} \\
& \Longrightarrow \lim _{m \rightarrow \infty}\left(\frac{a_{i j}^{(m)}}{r^{m}}\right)^{1 / m} \rightarrow 1 \Longrightarrow \lim _{m \rightarrow \infty}\left[a_{i j}^{(m)}\right]^{1 / m}=r .
\end{aligned}
$$

Conversely, we know from the Perron-Frobenius theorem that $r>0$, so if $\lim _{k \rightarrow \infty}\left[a_{i j}^{(k)}\right]^{1 / k}=r$, then $\exists k_{0}$ such that $\forall m \geq k_{0},\left[a_{i j}^{(m)}\right]^{1 / m}>0$, which implies that $\mathbf{A}^{m}>\mathbf{0}$, and thus \mathbf{A} is primitive by Frobenius's test (p. 678).

Solutions for exercises in section 8.4

8.4.1. The left-hand Perron vector for \mathbf{P} is $\boldsymbol{\pi}^{T}=(10 / 59,4 / 59,18 / 59,27 / 59)$. It's the limiting distribution in the regular sense because \mathbf{P} is primitive (it has a positive diagonal entry-recall Example 8.3 .3 (p. 678)).
8.4.2. The left-hand Perron vector is $\boldsymbol{\pi}^{T}=(1 / n)(1,1, \ldots, 1)$. Thus the limiting distribution is the uniform distribution, and in the long run, each state is occupied an equal proportion of the time. The limiting matrix is $\mathbf{G}=(1 / n) \mathbf{e e}^{T}$.
8.4.3. If \mathbf{P} is irreducible, then $\rho(\mathbf{P})=1$ is a simple eigenvalue for \mathbf{P}, so $\operatorname{rank}(\mathbf{I}-\mathbf{P})=n-\operatorname{dim} N(\mathbf{I}-\mathbf{P})=n-$ geo $^{\operatorname{mult}_{\mathbf{P}}}(1)=n-\operatorname{alg}_{\operatorname{mult}}^{\mathbf{P}}(1)=n-1$.
8.4.4. Let $\mathbf{A}=\mathbf{I}-\mathbf{P}$, and recall that $\operatorname{rank}(\mathbf{A})=n-1$ (Exercise 8.4.3). Consequently,

$$
\mathbf{A} \text { singular } \Longrightarrow \mathbf{A}[\operatorname{adj}(\mathbf{A})]=\mathbf{0}=[\operatorname{adj}(\mathbf{A})] \mathbf{A} \quad(\text { Exercise } 6.2 .8, \text { p. } 484)
$$ and

$$
\operatorname{rank}(\mathbf{A})=n-1 \Longrightarrow \operatorname{rank}(\operatorname{adj}(\mathbf{A}))=1 \quad(\text { Exercises 6.2.11 })
$$

It follows from $\mathbf{A}[\operatorname{adj}(\mathbf{A})]=\mathbf{0}$ and the Perron-Frobenius theorem that each column of $[\operatorname{adj}(\mathbf{A})]$ must be a multiple of \mathbf{e} (the column of 1 's or, equivalently, the right-hand Perron vector for $\mathbf{P})$, so $[\operatorname{adj}(\mathbf{A})]=\mathbf{e v}^{T}$ for some vector \mathbf{v}. But $[\operatorname{adj}(\mathbf{A})]_{i i}=P_{i}$ forces $\mathbf{v}^{T}=\left(P_{1}, P_{2}, \ldots, P_{n}\right)$. Similarly, $[\operatorname{adj}(\mathbf{A})] \mathbf{A}=\mathbf{0}$ insures that each row in $[\operatorname{adj}(\mathbf{A})]$ is a multiple of $\boldsymbol{\pi}^{T}$ (the left-hand Perron vector of \mathbf{P}), and hence $\mathbf{v}^{T}=\alpha \boldsymbol{\pi}^{T}$ for some α. This scalar α can't be zero; otherwise $[\operatorname{adj}(\mathbf{A})]=\mathbf{0}$, which is impossible because $\operatorname{rank}(\operatorname{adj}(\mathbf{A}))=1$. Therefore, $\mathbf{v}^{T} \mathbf{e}=\alpha \neq 0$, and $\mathbf{v}^{T} /\left(\mathbf{v}^{T} \mathbf{e}\right)=\mathbf{v}^{T} / \alpha=\boldsymbol{\pi}^{T}$.
8.4.5. If $\mathbf{Q}_{k \times k}(1 \leq k<n)$ is a principal submatrix of \mathbf{P}, then there is a permutation matrix \mathbf{H} such that $\mathbf{H}^{T} \mathbf{P H}=\left(\begin{array}{cc}\mathbf{Q} & \mathbf{X} \\ \mathbf{Y} & \mathbf{Z}\end{array}\right)=\widetilde{\mathbf{P}}$. If $\mathbf{B}=\left(\begin{array}{ll}\mathbf{Q} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}\end{array}\right)$, then $\mathbf{B} \leq \widetilde{\mathbf{P}}$, and we know from Wielandt's theorem (p. 675) that $\rho(\mathbf{B}) \leq \rho(\widetilde{\mathbf{P}})=1$, and if $\rho(\mathbf{B})=\rho(\widetilde{\mathbf{P}})=1$, then there is a number ϕ and a nonsingular diagonal matrix \mathbf{D} such that $\mathbf{B}=\mathrm{e}^{\mathrm{i} \phi} \mathbf{D} \widetilde{\mathbf{P}} \mathbf{D}^{-1}$ or, equivalently, $\widetilde{\mathbf{P}}=\mathrm{e}^{-\mathrm{i} \phi} \mathbf{D} \mathbf{B D}^{-1}$. But this implies that $\mathbf{X}=\mathbf{0}, \quad \mathbf{Y}=\mathbf{0}$, and $\mathbf{Z}=\mathbf{0}$, which is impossible because \mathbf{P} is irreducible. Therefore, $\rho(\mathbf{B})<1$, and thus $\rho(\mathbf{Q})<1$.
8.4.6. In order for $\mathbf{I}-\mathbf{Q}$ to be an M-matrix, it must be the case that $[\mathbf{I}-\mathbf{Q}]_{i j} \leq 0$ for $i \neq j$, and $\mathbf{I}-\mathbf{Q}$ must be nonsingular with $(\mathbf{I}-\mathbf{Q})^{-1} \geq \mathbf{0}$. It's clear that $[\mathbf{I}-\mathbf{Q}]_{i j} \leq 0$ because $0 \leq q_{i j} \leq 1$. Exercise 8.4 .5 says that $\rho(\mathbf{Q})<1$, so
the Neumann series expansion (p. 618) insures that $\mathbf{I}-\mathbf{Q}$ is nonsingular and $(\mathbf{I}-\mathbf{Q})^{-1}=\sum_{j=1}^{\infty} \mathbf{Q}^{j} \geq \mathbf{0}$. Thus $\mathbf{I}-\mathbf{Q}$ is an M-matrix.
8.4.7. We know from Exercise 8.4.6 that every principal submatrix of order $1 \leq k<$ n is an M-matrix, and M-matrices have positive determinants by (7.10.28) on p. 626.
8.4.8. You can consider an absorbing chain with eight states

$$
\{(1,1,1),(1,1,0),(1,0,1),(0,1,1),(1,0,0),(0,1,0),(0,0,1),(0,0,0)\}
$$

similar to what was described in Example 8.4.5, or you can use a four-state chain in which the states are defined to be the number of controls that hold at each activation of the system. Using the eight-state chain yields the following mean-time-to-failure vector.
$\left.\begin{array}{l|l}(1,1,1) & 368.4 \\ (1,1,0) & 366.6 \\ (1,0,1) & 366.6 \\ (0,1,1) & 366.6 \\ (1,0,0) & 361.3 \\ (0,1,0) & 361.3 \\ (0,0,1) & 361.3\end{array}\right)=\left(\mathbf{I}-\mathbf{T}_{11}\right)^{-1} \mathbf{e}$.
8.4.9. This is a Markov chain with nine states (c, m) in which c is the chamber occupied by the cat, and m is the chamber occupied by the mouse. There are three absorbing states - namely $(1,1),(2,2),(3,3)$. The transition matrix is

The expected number of steps until absorption and absorption probabilities are

$$
\left.\left(\mathbf{I}-\mathbf{T}_{11}\right)^{-1} \mathbf{e}=\begin{array}{c}
(1,2) \tag{2,2}\\
(1,3) \\
(2,1) \\
(2,3) \\
(3,1) \\
(3,2)
\end{array}\right)\left(\begin{array}{c}
3.24 \\
3.24 \\
3.24 \\
2.97 \\
3.24 \\
2.97
\end{array}\right) \quad \text { and } \quad\left(\mathbf{I}-\mathbf{T}_{11}\right)^{-1} \mathbf{T}_{12}=\left(\begin{array}{ccc}
(1,1) & (2,2) & (3,3) \\
0.226 & 0.41 & 0.364 \\
0.226 & 0.364 & 0.41 \\
0.226 & 0.41 & 0.364 \\
0.142 & 0.429 & 0.429 \\
0.226 & 0.364 & 0.41 \\
0.142 & 0.429 & 0.429
\end{array}\right)
$$

